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 Definition: A LP is in symmetric form if all the 

variables are restricted to be nonnegative and all 

the constraints are inequalities of the type:

DUALITY

objective type 
corresponding 
inequality type 

max ≤

min ≥
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 We first define the primal and dual problems

DUALITY  DEFINITIONS
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 The problems (P ) and (D) are called the symmetric 

dual LP problems; we restate them as

DUALITY  DEFINITIONS

( )P
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DUALITY  DEFINITIONS
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EXAMPLE  1:  MANUFACTURER  
TRANSPORTATION  PROBLEM

warehouses
retail stores

R 1 R 2 R 3

W 1 2 4 3

W 2 5 3 4

W 1

W 2

R 1

R 2

R 3

shipment cost coefficients
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EXAMPLE  1:  MANUFACTURER  
TRANSPORTATION  PROBLEM

 We are given that the supplies stored in warehouses    

satisfy 

 We are also given the demands needed to be met at 

the retail stores                            :

1 2W Wand

, ,1 2 3R R Rand
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EXAMPLE  1:  MANUFACTURER  
TRANSPORTATION  PROBLEM

 The problem is to determine the least-cost shipping 

schedule

 We define the decision variable

 The shipping costs may be viewed as
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FORMULATION  STATEMENT
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DUAL  PROBLEM  SETUP  USING 
SYMMETRIC  FORM
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DUAL  PROBLEM  SETUP
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 The moving company proposes to the manufac-
turer to:

 To convince the manufacturer to get the 
business, the mover ensures that the delivery 
fees cannot exceed the transportation costs the 
manufacturer would incur (the dual constraints)

THE  DUAL  PROBLEM  INTERPRETATION 

1 1

2 2

1 3

2 4

3 5

300 /
600 /
200 /
300 /
400 /

W y unit
W y unit
R y unit
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buy all the units at at
buy all the units at at
sell all the units at at
sell all the units at at
sell all the units at at
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THE  DUAL  PROBLEM  INTERPRETATION 

 The mover wishes to maximize profits, i.e.,
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 Resource requirements

EXAMPLE  2:  FURNITURE  PRODUCTS

item sales price ($)

desks 60

tables 30

chairs 20

requirements

lumber board

labor
carpentry

finishing
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 The Dakota Furniture Company manufacturing:

 We assume that the demand for desks, tables and 
chairs is unlimited and the available resources are 
already purchased 

 The decision problem is to maximize total revenues

EXAMPLE  2:  FURNITURE  PRODUCTS

resource desk table chair available

lumber board (ft ) 8 6 1 48

finishing (h) 4 2 1.5 20

carpentry (h) 2 1.5 0.5 8
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 We define decision variables

 The Dakota problem is

PRIMAL  AND  DUAL  PROBLEM  
FORMULATION  

x number  of   desks  produced
x number  of   tables  produced
x = number  of   chairs  produced
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PRIMAL  AND  DUAL  PROBLEM  
FORMULATION

 The dual problem is
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PRIMAL  AND  DUAL  PROBLEM  
FORMULATION
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 An entrepreneur wishes to purchase all of 
Dakota’s resources

 He needs, therefore, to determine the prices to 
pay for each unit of each resource

 We solve the Dakota dual problem to determine
y 1, y 2 and y 3

INTERPRETATION  OF  THE  
DUAL  PROBLEM

y price  paid  for lumber board ft

y price  paid  for h  of   finishing labor

y price  paid  for h  of   carpentry labor
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 To induce Dakota to sell the raw resources, the 
resource prices must be set sufficiently high

 For example, the entrepreneur must offer Dakota 
at least $ 60 for a combination of resources that 
consists of 8 ft of lumber board, 4 h of finishing 
and 2 h of carpentry, since Dakota could use this 
combination to sell a desk for $ 60: this require-
ment implies the following dual constraint:

INTERPRETATION  OF  THE  
DUAL  PROBLEM

y y y1 2 38 4 2 60+ + ≥
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 In the same way, we obtain the two additional 

constraints for a table and for a chair

 The i th primal variable is associated with the i th

constraint in the dual problem statement 

 The j th dual variable is associated with the  j th

constraint in the primal problem statement

INTERPRETATION  OF  DUAL PROBLEM



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 A new diet requires that all food eaten come from 

one of the four “basic food groups”:

 chocolate cake

 ice cream

 The four foods available for consumption are

 brownie

 chocolate ice cream

EXAMPLE  3:  DIET  PROBLEM

 soda

 cheesecake 

 cola

 pineapple cheesecake
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EXAMPLE  3:  DIET  PROBLEM

 Minimum requirements for each day are:

 500 cal

 6 oz chocolate

 10 oz sugar

 8 oz fat

 The objective is to minimize the diet costs
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EXAMPLE  3:  DIET  PROBLEM

food calories
chocolate

(oz)
sugar (oz) fat (oz)

costs 
(cents)

brownie 400 3 2 2 50

chocolate 
ice cream
(scoop)

200 2 2 4 20

cola 
(bottle) 150 0 4 1 30

pineapple 
cheesecake

(piece)
500 0 4 5 80
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 Objective of the problem is to minimize the total 

costs of the diet

 Decision variables are defined for each day’s 

purchases

PROBLEM  FORMULATION

x number  of  brownies

x number  of  chocolate ice cream scoops

x number  of  bottles of  soda

x number of  pineapple cheesecake pieces

1

2

3

4

=

=

=

=  
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PROBLEM  FORMULATION

 The problem statement is

i
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 The dual problem is

EXAMPLE  3:  DIET  PROBLEM

max W = y y y y

s.t.

y y y + y
y y y y
y y + y
y y + y

y , y , y , y 0

1 2 3 4

1 2 3 4

1 2 3 4
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≤
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We consider a salesperson of “nutrients” who is 
interested in assuming that each dieter meets daily 
requirements by purchasing calories, sugar, fat 
and chocolate as “goods”

 The decision is to determine the prices charged
y i =   price per unit of required nutrient to sell to dieters

Objective of the salesperson is to set the prices  y i

so as to maximize revenues from selling to the 
dieter  the daily ration of required nutrients

INTERPRETATION  OF  THE  DUAL
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 Now, the dieter can purchase a brownie for 50 ¢

and have 400 cal, 3 oz of chocolate, 2 oz of sugar 
and 2 oz of fat

 The sales price  y i must be set sufficiently low to 
entice the buyer to get the required nutrients from 

the brownie:

 We derive similar constraints for the ice cream, 
the soda and the cheesecake

INTERPRETATION  OF  DUAL

y y y y1 2 3 4400 3 2 2 50+ + + ≤ brownie 
constraint
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DUAL  PROBLEMS
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 For any      feasible for (P ) and any      feasible for   

( D )

 Proof:

T T TT T

T T TT

A y c c y A c x y A x

c x y A x y b b y

≥ ⇒ ≤ ⇒ ≤

≤ ≤ =

WEAK  DUALITY  THEOREM

TTc x b y≤

x y
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COROLLARY  1 OF  THE  WEAK  
DUALITY  THEOREM

( )

( )

TT

TT

x is feasible for P c x y b

for  any  feasible y for D

c x y b min W∗

⇒ ≤

≤ =

( )
T

for  any  feasible x for P ,

c x min W≤
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COROLLARY  2 OF  THE  WEAK  
DUALITY  THEOREM

( )

( )

TT

TT T

y is feasible for D c x y b

for  every  feasible x for P

max Z max c x c x y b∗

⇒ ≤

= = ≤

( )
T

for  any  feasible y of D ,

y b max Z≥
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If ( P ) is feasible and max Z is unbounded, i.e.,

then, ( D ) has no feasible solution.

If  ( D ) is feasible and min Z is unbounded, i.e.,

then, ( P ) is infeasible.

COROLLARIES  3 AND  4 OF  THE  
WEAK  DUALITY  THEOREM

Z +∞→ ,

Z ∞−→ ,
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 Consider the maximization problem

DUALITY  THEOREM  APPLICATION

P( )
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 The corresponding dual is given by

 With the appropriate substitutions, we obtain

DUALITY  THEOREM  APPLICATION

T

T

min W = b y

s.t.

A y c

y 0

≥

≥

D( )
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DUALITY  THEOREM  APPLICATION

min W = y y

s.t.

y y

y y

y y

y y

y 0, y 0

1 2
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 Consider the primal decision

decision is feasible for (P) with

 The dual decision

is feasible for (D) with

GENERALIZED  FORM  OF  THE  DUAL

1, 1,2,3,4 ;ix i= =

1, 1,2iy i= =

10TZ c x= =

40TW b y= =
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DUALITY  THEOREM  APPLICATION

 Clearly,

and so clearly, the feasible decision for (P) and (D)

satisfy the Weak Duality Theorem

 Moreover, we have

( ) ( )≤1 2 3 4 1 210 40 =Z x , x , x , x = W y , y

( ) Tcorollary max Z = Z x , x , x , x b y =∗ ∗ ∗ ∗⇒ ≤1 2 3 42 40

( )corollary min W W y , y∗ ∗⇒ ≤ = 1 21 10  
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COROLLARIES  5 AND  6

(P) is feasible and (D) is infeasible, then,

(P) is unbounded

(D) is feasible and (P) is infeasible, then,

(D) is unbounded
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 Consider the primal dual problems:

 Now

EXAMPLE
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but

is impossible for (D) since it is inconsistent with

 Since (D) is infeasible, it follows from Corollary 5
that

 You are able to show this result by solving (P)

using the simplex scheme

EXAMPLE

Z ∞ →

1 2,y y 0≥
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 We consider the primal-dual problems (P) and (D) 

with

 We next provide the proof:

OPTIMALITY  CRITERION  THEOREM

0

0

x P
y D

( )
( )

is feasible for
is feasible for

TT 0 0
Weak  Duality

Theorem
c x b y⇒ ≤  

0

0

TT 0 0

x P
y D

c x b y

( )
( )

=

is feasible for
is feasible for
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OPTIMALITY  CRITERION  THEOREM

but we are given that

and so it follows that

and so        is optimal ;

similarly, 

and so it follows that        is optimal

TT 0 0c x b y=

TT 0 T 0c x b y c x≤ =
0x

T TT 0 0b y c x b y≥ =
0y

0feasible x with y feasible∀

0feasible y with x feasible∀
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(P) is feasible and (D) is feasible; then,

MAIN  DUALITY  THEOREM

TTc x b y∗ ∗=

x feasible for P which is optimal and( )∗∃

y feasible for D which is optimal such that( )∗∃
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

 and       are optimal for (P) and (D),

respectively, if and only if

 We prove this equivalence result by defining the 

slack variables                and               such that     

and     are feasible; at the optimum,y

x

*x *y
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

where the optimal values of the slack variables             

depend on the optimal values  

 Now,

u v∗ ∗and

x y∗ ∗and
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

 This implies that

 We need to prove optimality which is true if and 

only if
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 However,

 Also,

( ) ( )

T T T T

Optimality

Criterion Theorem

y u v x 0 b y c x

x is optimal for P and y is optimal for D

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

+ = ⇒ =

COMPLEMENTARY  SLACKNESS  
CONDITIONS

,
Main

Duality Theorem
T T T T

x y are optimal

c x b y y u v x 0

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗= ⇒ + =
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

 Note that

 At the optimum,

and

T
i i

j j

x y u v 0 component - wise each element 0

y u v x 0 y u 0 i m

and v x 0 j n

, , ,

1, ... ,

1, ... ,

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

> ⇒ ≥

+ = ⇒ = ∀ =

= ∀ =
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

 Hence, for  i =  1, 2, … , m

and

 Similarly for  j =  1, 2, … , n

and
m

ji i j j
i

a y c 0 x 0
1

∗ ∗

=

− > ⇒ =∑

n

i i i j j
j=1

y > 0 b = a x∗ ∗⇒ ∑

m

i ji i j
i=1

x > 0 a y = c∗ ∗⇒ ∑

m

i i j i i
j

b a x 0 y 0
1

∗ ∗

=

− > ⇒ =∑
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EXAMPLE

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4

. .

2 2 3 20

2 3 2 20

1, ... ,4i

max Z x x x x

s t

x x x x

x x x x

x 0 i =

= + + +

+ + + ≤

+ + + ≤

≥

( )P
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EXAMPLE

min W y y

s t

y y

y y

y y

y y

y y 0

1 2

1 2

1 2

1 2

1 2

1 2

20 20

. .

2 1

2 2

2 3 3

3 2 4

,

= +

+ ≥

+ ≥

+ ≥

+ ≥

≥

( )D
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EXAMPLE

( )

( )

x y optimal

y x x x x 0

y x x x x 0

y

min W

* *

* * * * *
1 1 2 3 4

* * * * *
2 1 2 3 4

*

,

20 2 2 3

20 2 3 2

1.2
0.2

28

⇒

− − − − =

− − − − =

 
=  

 

=

is given as an optimal solution with
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EXAMPLE

so that
3 4 3

3 4 4

2 3 20 4

3 2 20 4

x x x

x x x

∗ ∗ ∗

∗ ∗ ∗

+ = ⇒ =

+ = ⇒ =

x x x x

x x x x

y y x 0

y y x 0

y y

y y

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗

⇒

⇒

1 2 3 4

1 2 3 4

1 2 1

1 2 2

1 2

1 2

+ 2 + 2 + 3 = 20

2 + + 3 + 2 = 20

+ 2 = 1.2 + 0.4 > 1 =

2 + = 2.4 + 0.2 > 2 =

2 + 3 = 2.4 + 0.6 = 3

3 + 2 = 3.6 + 0.4 = 4
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COMPLEMENTARY  SLACKNESS  
CONDITION APPLICATIONS

 Key uses of c.s. conditions are

 finding optimal (P) solution given optimal (D)

solution and vice versa

 verification of optimality of solution (whether a 

feasible solution is optimal)

 We can start with a feasible solution and attempt 

to construct an optimal dual solution; if we suc-

ceed, then the feasible primal solution is optimal
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DUALITY

T

T

T

max Z = c x

s.t.

                     A x b

                

min W b y

s.t.

               

   

    A y c

y 0

      x 0
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P( )

( )
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 Suppose the primal problem is minimization, then, 

DUALITY

T

T

T

min Z = c x (P)
s.t.
                     A x b
                
max W b y (D)

s.t.
               

        

    c

x

y 0

0

A

 

y

≥

=

≤

≥

≥
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INTERPRETATION

 The economic interpretation is

 Suppose, we change

 In words, the optimal dual variable for each primal 
constraint gives the net change in the optimal 
value of the objective function Z for a one unit 
change in the constraint on resources

* T * T * *

i

i

Z max Z c x b y W minW

b constrained resource quantities
i m

y optimal dual variables*

,
1, 2, ... ,

= = = = =

−  =
− 

*
i i i i ib b b Z y b→ + ∆ ⇒ ∆ = ∆
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INTERPRETATION

 Economists refer to the dual variable as the 

shadow price on the constraint resource

 The shadow price determines the value/worth of 

having an additional quantity of a resource

 In the previous example, the optimal dual 

variables indicate that the worth of another unit 

of resource 1 is 1.2 while that of another unit of 

resource 2 is 0.2
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GENERALIZED  FORM  OF  THE  DUAL

 We start out with

Tmax Z = c x

s.t.

                     A x b

                         x 0

=

≥

P( )



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

GENERALIZED  FORM  OF  THE  DUAL

A b
x

A b

   
   ≤   
   − −   

 To find ( D ), we first put (P ) in symmetric form

y A x b

y A x b

x 0





 

   



symmetric
form
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 Let

 We rewrite the problem as

 The c.s. conditions apply

GENERALIZED  FORM  OF  THE  DUAL

T

T

min W b y

s t

A y c

y is unsigned

. .

=

≥
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EXAMPLE  5: THE PRIMAL

max Z x x x x
s t
y x x x x
y x
y x
y x P
y x
y x
y x

x x 0
x x unsigned

1 2 3 4

1 1 2 3 4

2 1

3 2

4 2

5 3

6 3

7 4

1 4

2 3

. .
8
8
4
4 ( )
4
2

10
,
,

= − + −

↔ + + + =
↔ ≤
↔ ≤
↔ − ≤
↔ ≤
↔ − ≤
↔ ≤

≥
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EXAMPLE  5: THE DUAL

min W y y y y y y y

s t

x y y

x y y y D

x y y y

x y

y y 0

y unsigned

1 2 3 4 5 6 7

1 1 2

2 1 3 4

3 1 5 6

4 7

2 7

1

8 8 4 4 4 2 10

. .

1

1 ( )

1

1

, ...... ,

π= + + + + + +

↔ + ≥

↔ + − = −

↔ + − =

↔ + ≥

≥
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EXAMPLE  5: c.s. conditions
 We are given that

is optimal for (P)

 Then the c.s. conditions obtain

x

0

8
4
4

∗

 
 −
 =
 
  

( )* * *
1 1 2 1x y y 0+ − =
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EXAMPLE  5: c.s. conditions

so that

 The other c.s. conditions obtain

 Now,             implies                         and so

x 0 y y1 1 28 1∗ ∗ ∗= > ⇒ + =

i i j j i
j

y a x b 0
4

1

∗ ∗

=

 
− = 

 
∑

x 04
∗ = x 04 10∗ − <

y 07
∗ =



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE  5: c.s. conditions

 Also,             implies

 Similarly, the c.s. conditions 

have implications on the       variable

*
3 4x =

*
6y 0=

7
* *

1
j j i i j

i
x a y c 0

=

 
− = 

 
∑

*
iy
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EXAMPLE  5: c.s. conditions

 Since                 , then we have

 Now, with              we have

 Since,                 we have

*
2 4x = −

*
3y 0=

*
7y 0=

*
1 1y > −

= TW b y

* *
2 11y y= −
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EXAMPLE  5

 Suppose

and so,

 Furthermore,

implies

*
1 1y =

*
2y 0=

* * * *
1 3 4 41 1y y y y+ − = − = −

*
4 2y =
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EXAMPLE  5
 Also

implies

and so

*
51 1y+ =

* * *
1 5 6 1y y y+ − =

*
5y 0=
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EXAMPLE  5
 Therefore

and so

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

* 8 1 8 4 4 2

4 2 10

16

W y 0 0

0 0 0

= + + + +

+ +

=

( ) ( )* *16W Z P D= = ⇔ optimality of and
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PRIMAL – DUAL TABLE

primal (maximize) dual (minimize)

A ( coefficient matrix ) A T ( transpose of the coefficient matrix )

b ( right-hand side vector ) b ( cost vector )

c ( price vector ) c ( right hand side vector )

i th constraint is  = type the dual variable  y i is unrestricted in sign

i th constraint is      type the dual variable  y i        0

i th constraint is      type the dual variable   y i        0

x j  is unrestricted j th dual constraint is  = type

x j        0 j th dual constraint is     type

x j        0 j th dual constraint is     type

≥

≤

≥

≤

≥

≤

≥

≤
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